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Abstract. This paper presents a novel system that fuses components
in a traditional World Model into a robust system, that is pretrained
entirely on a dataset of unlabeled videos and random trajectories from
a simulator. The pretrained model, when frozen and deployed, zero-shot
transfers to unseen environments for fast Reinforcement Learning of a
1-layer policy or planning. To facilitate transfer, we use a representation
that is based on Bird’s Eye View (BEV) images. Thus, our agent learns
representations of the observation by first learning to translate from com-
plex First-Person View (FPV) based RGB images to BEV representa-
tions, then learning to navigate using those representations. Later, when
deployed, the agent uses the perception model that translates FPV-based
RGB images to embeddings that were learned by the FPV to BEV trans-
lator and that can be used by the downstream policy. The incorporation
of state-checking modules using Anchor images and Mixture Density
LSTM not only interpolates uncertain and missing observations but also
enhances the robustness of the model in the real-world. We trained the
model using data from a Differential drive robot in the CARLA simula-
tor. Our methodology’s effectiveness is shown through the deployment of
trained models onto a real-world Differential drive robot, where using the
BEV representation leads to better transfer and faster learning. Lastly we
release a comprehensive codebase, dataset and models for training and
deployment (https://sites.google.com/usc.edu/world-model-sim2real/).

1 Introduction

Reinforcement Learning (RL) has predominantly been conducted in simulator
environments, primarily due to the prohibitive costs associated with conducting
trial-and-error processes in the real world. With the advances in graphics and
computational technologies, there has been a significant development in realistic
simulators that capture the system (robot) information. RL is a widely sought-
after learning method because of its only need of a sparse reward signal for the
task. However, it is compute-intensive and slow, especially when we train models
end-to-end in simulators (23). An alternative for RL is Imitation learning or
Behaviour cloning, but it necessitates the collection of expert data.

In this paper, we formulate a new setting for Zero-shot transfer for Visual
Navigation without Maps, involving unlabeled expert videos and random trajec-
tory rollouts obtained from the CARLA simulator, as outlined in Fig. 1. To avoid
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any Sim2Real gap within the control pipeline and focus only on the perception
transfer, we built a Differential-drive-based robot in the CARLA simulator that
closely resembles our real-world robot. Using this setup, we construct a large
dataset consisting of First-person view (FPV) and Bird’s eye view (BEV) image
sequences from the CARLA (5) simulator. The system is pre-trained entirely
on these unlabeled videos and random trajectory datasets obtained from the
simulator. The system is then frozen and deployed for an online visual navi-
gation task. This pretraining is inexpensive as it runs in a simulator, but we
hypothesize that BEV maps contain crucial information to facilitate learning of
future navigation tasks. Here, we hence seek to answer the question of whether
such pre-training can benefit and accelerate the learning of downstream visual
navigation tasks.

Fig. 1. Overview of our system We first pretrain the visual navigation system
on a set of large-scale dataset, consisting of unlabeled expert videos (expert videos
without actions used to pretrain the encoder) and random trajectory rollouts (used to
train memory module.), collected in the simulator. Once the model is pretrained. The
frozen model is deployed for performing Visual Navigation either using Reinforcement
Learning or Planning.

2 Related work

Although, many methods (6; 10; 12; 13) use simulators for learning through an
extensive amount of experiences that could be used to train a model policy end
to end, some recent works (2) have shown promising results, on various tasks
(9? ), using encoders that are pretrained on large unlabelled expert data and
then train a significantly smaller network on top of the frozen encoder. Since
these encoders are not trained on a specific task, we call it pretraining. Repre-
sentations estimated using these pretrained and frozen encoders would help the
model remain lightweight and flexible, which is desirable for mobile platforms.
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Fig. 2. Working of the System. RGB observation ot at time step t is passed to the
perception model (blue) that compresses it into an embedding zt. The memory model
takes the current latent representation zt and uses the historical context to refine the
state into ẑt. These embeddings could either be used to train a control policy (orange)
or to reconstruct the Bird’s Eye View (BEV) for planning (grey). Both utilities result
in an action command at.

In our work, we employ such an approach with a new pre-training objective (to
reconstruct BEV maps from FPV inputs), which we show provides very good
generalization for downstream robotics tasks. Since learning representations does
not involve any dynamics, any navigation dataset consisting of FPV-BEV could
be used to pretrain the encoder. By training a Vision encoder using a large ag-
gregated dataset, this could be a comparable alternative to the current ViT’s
(18) used for Robotics.

Bird’s Eye View (BEV) based representation allows for a compact represen-
tation of the scene, invariant to any texture changes, scene variations, occlusions
or lightning differences in an RGB image. This makes for an optimal represen-
tation for PointGoal Navigation. Furthermore, it is one of the most efficient and
lightweight form of information, since the BEV maps (occupancy maps) that we
use are binary. For example, the corresponding BEV image of an 1MB FPV im-
age is around 0.5KB. Some works estimate BEV maps from RGB images, such as
(14), (17) and (19). However, these map predictions from FPV images are typ-
ically only evaluated for visual tasks, with a lack of evidence that BEV-based
representations can be useful for robotic tasks. Furthermore, (1) have shown
that reconstruction-based methods like VAE (11) perform close to Random en-
coders. Incorporating these representations as inputs for training downstream
models for robotic tasks to ensure their compatibility indeed is challenging. Our
pretraining approach not only allows for learning visual representations that are
optimal for robotic tasks, but also allows these representations to reconstruct
the corresponding BEV map. Together, they allow the lightweight policy model
to efficiently learn the task through these representations.

Recurrent world-models. (7) introduces a novel approach to RL, incorporating
a vision model for sensory data representation and a memory model for capturing
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temporal dynamics, all of which collectively improve agent performance. Apart
from the advantages of pertaining each module, some of the modules in this
architecture can be frozen after learning the representation of the environment,
paving the way for more efficient and capable RL agents.

We propose a novel training regime and develop a perception model pre-
trained on a large simulated dataset to translate FPV-based RGB images into
embeddings that align with the representations of the corresponding BEV im-
ages. Along with that, we upgrade the existing world models framework using
novel model-based Temporal State Checking (TSC) and Anchor State Checking
(ASC) methods that add robustness to the navigation pipeline when transferred
to the real world. We release the code for pre-training, RL training and ROS-
based deployment of our system on a real-world robot, FPV-BEV dataset and
pre-trained models. With the above contributions, we hope move closer towards
open-sourcing a robust Visual Navigation system that uses pre-trained models
trained on large datasets and simulations for efficient representation learning.

3 Proposed Method

For an autonomous agent to navigate using camera imagery, we use a simple
system that consists of a perception model and a control model as shown in 2.
The perception model takes input observation ot and outputs an embedding zt
that is then passed on to the policy, as part of the control model to output an
action vector at, throttle and steer. We first outline the perception model, with
the objective of efficiently learning compact intermediate representations com-
patible with downstream policy learning, solely from a sequence of observations
from the simulator. We then describe our second contribution, which involves the
enhancement of the robustness and stability of the predictions during real-world
evaluation.

3.1 Perception model

When training the perception model, we focus on 3 main principles. Firstly, zt,
the embedding vector should always be consistent with the BEV reconstruc-
tion. Secondly, BEV images must be represented in a continuous latent space
that has smooth temporal transitions to similar BEV images. Finally, the per-
ception model must efficiently utilize an unlabelled sequence of images as an
expert video portraying optimal behaviour. This would also allow for unsuper-
vised training/fine-tuning of the model using real-world expert videos, which we
leave for future work.

The perception model consists of a ResNet-50 (8) that is tasked with process-
ing the observation ot obtained from an RGB camera, with the primary objective
of comprehending the environmental context in which the robot operates, and
compresses ot into a consistent intermediate representation, zt, which when de-
coded through a BEV decoder, outputs a BEV image xt. Our choice for BEV
observations is rooted in their capacity to convey the surrounding roadmaps
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with minimal information redundancy. To learn such representations from a set
of FPV and corresponding binary BEV images, prior methods (14) train a Vari-
ational Autoencoder (VAE) (11) to encode an RGB image ot that is decoded
using zt ∈ RB×d, where B is the batch size and d is the embedding dimen-
sion. Given that we have batches x (BEV predictions through the model logits)
and y (ground-truth BEV observations), we could then optimize the following
reconstruction loss LR:

LR = −[y · log(x) + (1− y) · log(1− x)] (1)

Using the above loss, the VAE Encoder will learn to embed the FPV obser-
vations o into z that will be reconstructed by the decoder to their corresponding
BEV outputs/reconstructions x, and y being the corresponding ground-truth
BEV outputs. Additionally, KL (Kullback Leibler) divergence forces the embed-
dings, to be within a Gaussian distribution of zero-mean and unit-covariance,
that allows for smooth interpolation. The representations learnt by VAE would
embed 2 FPV observations that are very similar, for example, 2 straight roads,
but a have slight variation in the angle to be closer, than a straight road and an
intersection. The following is the loss function used to train a VAE baseline.

LELBO = LR + β ·KL[N (µ, σ2) || N (0, 1)] (2)

Although, the above ELBO loss would allow the model to learn appropriate
representations for understanding the observation, these representations do not
capture the temporal understanding of the task. Typically, representations for
robotics embed observations in such a way to make it easier for the policy to
learn the behaviour of an objective quickly and efficiently. One of the earliest
methods for self-supervised learning, Time-Contrastive Networks (22) disam-
biguates temporal changes by embedding representations closer in time, closer
in the embedding space and farther otherwise by optimizing the following loss
function, which is used in the Time-contrastive learning (TCN) baseline.

LInfoNCE = Ezps

[
− log

Sφ (zan, zps)

EzngSφ (zan, zng)

]
(3)

In the above function, zan, zps and zng are a batch of embeddings corre-
sponding to anchors, positives and negatives and Sφ is the similarity metric of
the embeddings from the encoder fφ. For a given single observation sample ot,
the embedding obtained as an anchor zan, we uniformly sample a frame within
a temporal distance threshold dthresh to obtain zps at timestep t + δ and zng,
anywhere from t+ δ to the end of the episode. However, recently (16) has shown
that in-domain embeddings learnt by TCN are discontinuous, leading to sub-
optimal policies. To alleviate this problem, we also add the reconstruction loss
LR that enhances the stability of the training process, and helps learn better
representations. To achieve the FPV-BEV translation using our method, we op-
timize the model parameters using the following contrastive with reconstruction
loss LCR for image encoding.
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Fig. 3. Training pipeline for the perception model. (a) During the training phase,
the ResNet model is trained using a set of temporal sequences, consisting of pairs of
input (FPV images o, displacement ∆g and orientation to goal ∆φ) and output (BEV
images x) from the simulator. Our contrastive loss embeds positives zps closer to the
anchor zan and negatives zng farther away. (b) In the bottom, we pictorially show the
input embeddings zt from FPV images, actions at and the output zt+1 that is used to
train the memory module.

LCR = LR + β · LInfoNCE (4)

In the above loss function, β balances the reconstruction with the contrastive
loss, since the model optimizes the reconstruction loss slower than the contrastive
loss. Using the above loss function, the model learns more temporally continuous
and smoother embeddings as it constrains the proximity of the embeddings not
only using the contrastive learning loss but also based on the BEV reconstruc-
tions.

3.2 Temporal model with Robustness modules

To enhance the robustness of the perception model and transfer it to the real
world setting, we implemented an additional model in the pipeline. Fig. 4 shows
our proposed method of robustness enhancement. This involves the integration
of an LSTM, functioning as a Memory model. The LSTM was trained on se-
quences {〈oj , aj〉}j=Tj=0 gathered from sequences {T0, T1, .., Tn} in the simulator.
The primary outcome of this Memory model is to effectively infuse historical
context {〈zj , aj〉}j=Tj=0 into the prediction of ẑt, which forms a candidate of zt,
and enhancing the robustness of the perception module when confronted with
the unseen real-world data.

ẑt ∼ P (ẑt | at−1, ẑt−1, ht−1) (5)

where at−1, ẑt−1, ht−1 respectively denotes action, state prediction at the
previous timestep, and historical hidden state at the time step t − 1. ẑt is the



Bird’s Eye View Based Pretrained World model for Visual Navigation 7

latent representation that is given as an input to the policy. We optimize M with
the below loss function:

LM = − 1

T

T∑
t=1

log(

K∑
j=1

θ · N (zt|µj , σj)) (6)

where {T,K, θj ,N (zt|µj , σj)} is, respectively, the training batch size, number

of Gaussian models, Gaussian mixture weights with the constraint
∑K
j=1 θj = 1,

and the probability of ground truth at time step t conditioned on predicted mean
µj and standard variance σj for Gaussian model j. Note this this is the same
loss objective used in Mixture Density Network RNN (MDN-RNN) (7).

Fig. 4. Robustness enhancement using Memory module. TSC (red) only takes
input from the representation zt when it comes with a high confidence score. Other-
wise, it takes the previous prediction by the LSTM ẑt−1 as interpolation. ASC (green)
improves the representation of the incoming observation by making it in-domain. The
crosses above correspond to rejecting the precepts and using the model’s state predic-
tion as the current state.

Nonetheless, it is noteworthy that zt that is obtained from the ResNet-50
may be slightly distinct from the latent distribution of BEV images when the
perception model is applied to real-world observations ot, potentially impacting
the performance of the LSTM and the policy. To mitigate this concern, we
collected a dataset R comprising of the BEV-based latent embeddings s ∈ R
of 1439 FPV images which we define as the BEV anchors. In practice, upon
obtaining the output vector zt from the ResNet-50, we measure its proximity to
each s ∈ R, subsequently identifying the closest match. We replace zt with the
identified anchor embedding z̄t, ensuring that both the LSTM and the policy
consistently uses the pre-defined BEV data distribution. We pass z̄t as an input
to the LSTM, along with the previous action at−1 to get the output ẑt+1. Again,
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we find the closest match ŝt ∈ R for ẑt. We call this module Anchor State
Checking (ASC):

z̄ = arg min
s∈S
‖z − s‖ (7)

Fig. 5. Out-of-domain and real-world evaluation We constructed two 6-class val-
idation datasets: one from the simulator (upper-portion in the table) and another from
real-world street-view data (lower-portion). The values in the header rows correspond
to number of data samples. Each class corresponds to the BEV images shown above.
We specify accuracies for each class. Along with that, we also specify the success rate
(SR) of the agent, when the encoder is deployed for real-world visual navigation. Our
method outperformed the ResNet classifier (baseline) on both the unseen simulation
dataset, the real-world validation dataset and real-world navigation as shown above.

We also utilize the LSTM model for rejecting erroneous predictions by the
ResNet-50, further enhancing the system’s robustness against noise. If the pro-
cessed prediction z̄t from the perception model is estimated with confidence score
τt, obtained from either cosine-similarity or MSE, below a predefined threshold
ρ, we deliberately discard z̄t and opt for ẑt. In such instances, we resort to
the output of the LSTM at the previous time-step. This module is known as
Temporal State Checking (TSC):

ẑt =

{
z̄t, τt ≥ ρ,

ẑt−1, τt < ρ.
(8)

Apart from adding robustness to the system using TSC, the utilization of the
Memory model also serves as the crucial purpose of performing interpolation for
the robots state in instances where actual observations ot are delayed, ensuring
the continuity and reliability of the entire system. There is often a notable dis-
crepancy in the update frequencies between control signals and camera frames,
since control signals often exhibit a significantly higher update rate (50Hz) com-
pared to the incoming stream of camera frames (15Hz). Values mentioned in
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brackets is in regards to our setup. This is also beneficial in the case of the re-
cent large vision-language models like RT-X (4) that could solve many robotic
tasks, but with a caveat of operating at a lower frequency, typically around 5Hz.

4 Experimental platform and setup

To leverage the extensive prior knowledge embedded in a pre-trained model, we
opt to train a ResNet-50 (8) model after initializing with ImageNet pre-trained
weights on a large-scale dataset containing FPV-BEV image pairs captured in
the simulator. We collected the train dataset from the CARLA simulator to train
both the Perception and the Memory model. Along with that, we also collected
the validation and the test datasets from 2 different real-world sources. Following
are the details on the collected datasets.

Fig. 6. Ablation experiments on the Test Dataset. Classes in the above table
have the same correspondences as the classes in Fig. 5. Each double-row corresponds
to a data sequence. We demonstrate that our approach not only attains high ACC (ac-
curacy), but also provides a more granular BEV representation compared to the naive
classifier, as indicated by the MSE (Mean Squared Error) and CE (Cross-Entropy)
metrics. (a). In the upper portion of the table, we assessed our method indepen-
dently of the LSTM on an unseen temporal sequence from the simulator, contrasting
it with the baseline CNN classifier. (b) In the lower portion, we compared the per-
formance of system with and without LSTM on a real-world data sequence. Note that
dashes in the table indicate the absence of a class in the respective sequence. We
compute the mean values for each row as shown in the last column.

4.1 Experimental platform

For evaluating Zero-shot real-world transfer, we built a hardware apparatus,
which is a Non-Holonomic, Differential-drive robot (Beobotv3 ) for the task of
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visual navigation. Our system is implemented using the ROS (Robotic Operating
System) middleware and uses a Coral EdgeTPU, which is an ASIC chip designed
to run CNN models for edge computing for all the compute. We used this Edge-
TPU to run the forward inference of the ResNet-50 through a ROS node.

The CARLA simulator had been primarily tailored to self-driving applica-
tions, that use Ackermann steering ; we further developed an existing differential
drive setup using Schoomatic (15) and upgraded the CARLA simulator. We find
this necessary because our real-world hardware system is based on differential-
drive and to enable seamless transfer without any Sim2Real gap in the control
pipeline, both the control systems need to have similar dynamics. In response to
this limitation, Luttkus (15) designed a model for the integration of a differential-
drive robot into the CARLA environment. Building upon their work, we under-
took the development of a version of CARLA simulator catering to differential-
drive robots for reinforcement learning, subsequently migrating it into the newly
introduced CARLA 0.9.13.

4.2 Data collection

Train dataset from CARLA simulator Within the CARLA simulator, we
have access to the global waypoints along various trajectories. To allow more
diversity, we randomly sampled a range of different orientations and locations.
Leveraging this setup, we facilitated the generation of a large dataset of FPV-
BEV images. We augmented the simulator’s realism by introducing weather
randomization and non-player traffic into the simulated environment.

Validation dataset from Google Street View Using the Google Street View
API, we obtained all the panoramic images from various locations on the USC
campus. The panoramic images were segmented with a Horizontal Field of View
(FoV) of 90 degrees and are manually segregated into 6 different classes as shown
in Fig. 5. We then manually assigned a prototypical BEV image to each of the
6 classes. The validation dataset does not have any temporal sequencing and is
primarily focused on having a broader and more uniform data distribution across
all the classes. Due to these reasons, this dataset becomes an optimal choice for
evaluating the perception model.

Test dataset from Beobotv3 To evaluate the quality of representations es-
timated by the entire system, we record a video sequence using a mobile robot.
More precisely, we recorded a set of 5 ROSBag sequences at different locations of
the USC campus. Later, we labelled all the frames in a ROSBag sequence, sim-
ilar to the above paragraph. However, unlike the validation set, the test dataset
has temporal continuity, which helps us judge the entire navigation system.

5 Evaluation and Results

Through our experiments, we aim to answer the following questions in regards
to our proposed method.
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Fig. 7. Comparison of runtime. Computation costs (runtime in milliseconds) of each
module in the navigation system for policy learning and planning are shown above.

1. How good are the representations obtained from the pretrained model for
learning to navigate using online RL?

2. How well can we plan using the BEV reconstructions from the pretrained
model?

3. Does contrastive learning help learning good representations compared to an
auxiliary task?

4. What are the performance benefits by adding ASC, TSC, and both?

5. How efficient and optimal is the navigation system when transferred to the
Real-world setup?

Policy Learning. We performed RL experiments by deploying the frozen
pretrained encoder and training a 1-layer policy in the CARLA simulator Fig. 8.
The task for the agent is to navigate to a goal destination using an RGB image
(ot, ∆gt, φt). We accomplished this by training a policy employing the PPO
algorithm (21). The design of the reward function is rooted in proportionality
to the number of waypoints the robot achieves to the designated goal point. In
each timestep, the policy receives the current embedding of the observation zt
concatenated with the directional vector pointing towards the waypoint tasked
with producing a pair of (throttle, steer) values. We compared our method with
VAE (reconstructing only the BEV image; Eqn. 2), TCN (trained using Eqn.
3), Random (Randomly initialized encoder and frozen), CLIP-RN50 (18). Note
that, many of the prior works (1; 3) have shown that randomly initialized and
frozen encoders do learn decent features from an observation.

Planning We use the TEB planner (20) to compute the action using an
occupancy map (BEV reconstruction) to perform a task. Typically, occupancy
map-based planners like TEB, use LiDAR data to compute the map of the envi-
ronment and estimate a plan to perform the task, but in our case, we reconstruct
the occupancy map using embedding obtained from RGB inputs. These maps
are straightforward to compute in the case of our method and the VAE baseline,
since these methods use a decoder. For the other baselines like the Random,
CLIP and TCN encoder, we freeze the encoder and train the decoder to upsam-
ple the embeddings to estimate the BEV reconstruction. The results obtained
for the planning task are shown in Fig. 8 as dotted lines. The success rates
correspond to percentage of rollouts that achieve the goal destination.
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Fig. 8. Policy learning and Planning experiments on navigation task using
pretrained representations. Using a pretrained ResNet encoder, we compare our
method with different baselines. The training curves are obtained when we train a
1-layer policy, using RL, that takes the embeddings from the frozen encoder. The x
and y axis corresponds to iterations and the cumulative reward, with the shaed regions
showing the 95% confidence intervals. We also perform planning experiments, where
the BEV reconstructions are used to navigate to the goal, as shown the by the success
rate (SR), through the dotted lines corresponding to each method.

Quantitative Analysis We evaluated the performance of our ResNet-50
model using the real-world validation dataset to evaluate the out-of-distribution
capabilities of the models and the results are shown in Table 5. The performance
of our perception model on both simulation and real-world dataset are compared
to the baseline, which is a 6-way ResNet-50 classifier. Our perception model
identifies the closest matching class for the output embedding. The baseline
is a ResNet-50 model trained on a 6-class training dataset comprising 140,213
labelled FPV images. This proves that contrastive learning using BEV prediction
enables better generalization to out-of-domain data and better transfer from
simulator to real (Table 5).

Ablation Experiments for state checking Following a similar approach,
we used the Test dataset to evaluate the entire system. Apart from the accuracy
also used Cross entropy (CE) and Mean Square error (MSE) to judge the quality
of reconstructions by the LSTM model. These results are shown in Table 6.
Similar to the above experiments, we also used data from the unseen Town from
the CARLA simulator to asses the predictions of our system, as shown in the
top half of the Figure. 6. The metrics presented in this table exhibit a slight
decrease compared to Table 5. This can be attributed to the increased presence
of abnormal observations and higher ambiguity between classes within the time-
series data obtained from the robot, as opposed to the manually collected and
labelled dataset in the validation dataset.
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Evaluation on a Real-world system We perform experiments on a Real-
world robot, where the agent is tasked with navigating to a given destination
location, using the pretrained ResNet encoder and the trained policy in the Carla
simulator. Success rates (SR) for planning experiments for our model are shown
in Fig. 5. For both policy learning and planning, we specify the computation costs
in Table. 7. As mentioned before, the success rates correspond to the percentage
of rollouts that achieve the goal destination.

6 Discussion and Future work

In this paper we proposed a robust navigation system that is trained entirely in
a simulator and frozen when deployed. We learn compact embeddings of an RGB
image for Visual Navigation that are aligned with temporally closer representa-
tions and reconstruct corresponding BEV images. By decoupling the perception
model from the control model, we get the added advantage of being able to pre-
train the encoder using a set of observation sequences irrespective of the robot
dynamics. Our system also consists of a memory module that enhances the ro-
bustness of the navigation system and is trained on an offline dataset from the
simulator. Although our experiments in this paper are limited to data obtained
through the simulator, one of the primary advantages of our methods is the
ability to use additional simulator/real-world FPV-BEV datasets by aggregat-
ing with the current dataset. We leave this for future work.
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